1/11
時点_ポイント最大11倍
久保隆宏
久保隆宏 「機械学習スタートアップシリーズ Pythonで学ぶ強化学習 [改訂第2版] 入門から実践まで」 Book
[在庫なし]
販売価格
3,520
円 (税込)
- 出荷目安:
- 当日-翌日出荷
たまるdポイント(通常) 32
+キャンペーンポイント(期間・用途限定) 最大10倍
※たまるdポイントはポイント支払を除く商品代金(税抜)の1%です。
※表示倍率は各キャンペーンの適用条件を全て満たした場合の最大倍率です。
各キャンペーンの適用状況によっては、ポイントの進呈数・付与倍率が最大倍率より少なくなる場合がございます。
dカードでお支払ならポイント3倍
各キャンペーンの適用状況によっては、ポイントの進呈数・付与倍率が最大倍率より少なくなる場合がございます。
- 商品情報
- レビュー
【販売店・発送】 タワーレコード株式会社
商品の情報
| 発売日:2019年09月22日 / ジャンル:DOMESTIC BOOKS / フォーマット:Book / 構成数:1 / 製造国:国内 / レーベル:講談社 / SKU:9784065172513 / 規格品番:9784065172513 |
商品の紹介
| 「Pythonで強化学習が実装できる!」と好評を得た入門書の改訂版。読者からの要望・指摘を反映させた。主に、Policy GradientとA2Cの記述・実装を見直した。 ・Pythonプログラミングとともに、ゼロからていねいに解説。 ・コードが公開されているから、すぐ実践できる。 ・実用でのネックとなる強化学習の弱点と、その克服方法まで紹介。 【おもな内容】 Day1 強化学習の位置づけを知る 強化学習とさまざまなキーワードの関係 強化学習のメリット・デメリット 強化学習における問題設定:Markov Decision Process Day2 強化学習の解法(1): 環境から計画を立てる 価値の定義と算出: Bellman Equation 動的計画法による状態評価の学習: Value Iteration 動的計画法による戦略の学習: Policy Iteration モデルベースとモデルフリーとの違い Day3 強化学習の解法(2): 経験から計画を立てる 経験の蓄積と活用のバランス: Epsilon-Greedy法 計画の修正を実績から行うか、予測で行うか: Monte Carlo vs Temporal Difference 経験を価値評価、戦略どちらの更新に利用するか:Valueベース vs Policyベース Day4 強化学習に対するニューラルネットワークの適用 強化学習にニューラルネットワークを適用する 価値評価を、パラメーターを持った関数で実装する:Value Function Approximation 価値評価に深層学習を適用する:Deep Q-Network 戦略を、パラメーターを持った関数で実装する:Policy Gradient 戦略に深層学習を適用する:Advantage Actor Critic (A2C) 価値評価か、戦略か Day5 強化学習の弱点 サンプル効率が悪い 局所最適な行動に陥る、過学習をすることが多い 再現性が低い 弱点を前提とした対応策 Day6 強化学習の弱点を克服するための手法 サンプル効率の悪さへの対応: モデルベースとの併用/表現学習 再現性の低さへの対応: 進化戦略 局所最適な行動/過学習への対応: 模倣学習/逆強化学習 Day7 強化学習の活用領域 行動の最適化 学習の最適化 |
収録内容
|
・構成数 | 1 |