11/25
時点_ポイント最大18倍
リーマン予想とはなにか 全ての素数を表す式は可能か /中村亨
販売価格
990
円 (税込)
- 出荷目安:
- 1~2営業日で出荷
たまるdポイント(通常) 9
+キャンペーンポイント(期間・用途限定) 最大17倍
※たまるdポイントはポイント支払を除く商品代金(税抜)の1%です。
※表示倍率は各キャンペーンの適用条件を全て満たした場合の最大倍率です。
各キャンペーンの適用状況によっては、ポイントの進呈数・付与倍率が最大倍率より少なくなる場合がございます。
dカードでお支払ならポイント3倍
各キャンペーンの適用状況によっては、ポイントの進呈数・付与倍率が最大倍率より少なくなる場合がございます。
- 商品情報
- レビュー
≪商品情報≫
著者名:中村亨
出版社名:講談社
発行年月:2015年08月
判型:新書
ISBN:9784062578288
≪内容情報≫
数学の未解決問題の中で最も人気のあるのが「リーマン予想」です。しかし、他の未解決問題と同様に、リーマン予想も難解です。「素数に関係している」「ゼータ関数のゼロ点が問題らしい」ということは聞いたことがあっても、その全体像の理解まではなかなか到達できません。本書は、そのような数学好きの読者に、リーマン予想の全体像とその意味をていねいに解説します。(ブルーバックス・2015年8月刊)
「リーマン予想」というのは、今から150年ほど前に生まれた数学の問題です。問題文としては今でも、当時と変わっていません。150年間何も変わっていないのなら、この間数学者は怠けていたのでしょうか? もちろんそんなことはありません。多くの数学者が、血のにじむような努力を重ねてきました。関連する研究の成果は、数学の世界を大きく変えてきています。それでも、いまだ解かれていない難問なのです。
それでは、リーマン予想とはどのような問題でしょうか。
それは、「リーマンのゼータ関数と呼ばれる複素数の関数の値が、どのような場合に0(零)になるか」という問題です。リーマンは、このような場所がどこであるかを予想したのですが、彼自身はそのことを証明することはできませんでした。そこで、後世にそれが正しければ証明し、間違いであれば反例を示すことが問題として残ったのです。
しかし、ある関数の性質が、どうしてそこまで重要な問題になるのでしょうか?
実は、リーマンのゼータ関数がどのような場合に0になるかを完全に知ることによって、原理的には「全ての素数を知ることができる」ようになるのです。
素数は、古代ギリシャの昔から、人々の興味を惹いてきました。それでも疑問は次々にわいてきます。素数の全てを知ることができれば、これまでにわからなった素数に関する多くの事柄がわかることになります。また、素数にまつわる新たな発見ももたらされるでしょう。そのような期待があるからこそ、ここまでリーマン予想が注目されるのです。
著者名:中村亨
出版社名:講談社
発行年月:2015年08月
判型:新書
ISBN:9784062578288
≪内容情報≫
数学の未解決問題の中で最も人気のあるのが「リーマン予想」です。しかし、他の未解決問題と同様に、リーマン予想も難解です。「素数に関係している」「ゼータ関数のゼロ点が問題らしい」ということは聞いたことがあっても、その全体像の理解まではなかなか到達できません。本書は、そのような数学好きの読者に、リーマン予想の全体像とその意味をていねいに解説します。(ブルーバックス・2015年8月刊)
「リーマン予想」というのは、今から150年ほど前に生まれた数学の問題です。問題文としては今でも、当時と変わっていません。150年間何も変わっていないのなら、この間数学者は怠けていたのでしょうか? もちろんそんなことはありません。多くの数学者が、血のにじむような努力を重ねてきました。関連する研究の成果は、数学の世界を大きく変えてきています。それでも、いまだ解かれていない難問なのです。
それでは、リーマン予想とはどのような問題でしょうか。
それは、「リーマンのゼータ関数と呼ばれる複素数の関数の値が、どのような場合に0(零)になるか」という問題です。リーマンは、このような場所がどこであるかを予想したのですが、彼自身はそのことを証明することはできませんでした。そこで、後世にそれが正しければ証明し、間違いであれば反例を示すことが問題として残ったのです。
しかし、ある関数の性質が、どうしてそこまで重要な問題になるのでしょうか?
実は、リーマンのゼータ関数がどのような場合に0になるかを完全に知ることによって、原理的には「全ての素数を知ることができる」ようになるのです。
素数は、古代ギリシャの昔から、人々の興味を惹いてきました。それでも疑問は次々にわいてきます。素数の全てを知ることができれば、これまでにわからなった素数に関する多くの事柄がわかることになります。また、素数にまつわる新たな発見ももたらされるでしょう。そのような期待があるからこそ、ここまでリーマン予想が注目されるのです。