11/24
時点_ポイント最大11倍
事例でわかるMLOps 機械学習の成果をスケールさせる処方箋 /杉山阿聖 太田満久 久井裕貴
販売価格
3,300
円 (税込)
- 出荷目安:
- 1~2営業日で出荷
たまるdポイント(通常) 30
+キャンペーンポイント(期間・用途限定) 最大10倍
※たまるdポイントはポイント支払を除く商品代金(税抜)の1%です。
※表示倍率は各キャンペーンの適用条件を全て満たした場合の最大倍率です。
各キャンペーンの適用状況によっては、ポイントの進呈数・付与倍率が最大倍率より少なくなる場合がございます。
dカードでお支払ならポイント3倍
各キャンペーンの適用状況によっては、ポイントの進呈数・付与倍率が最大倍率より少なくなる場合がございます。
- 商品情報
- レビュー
≪商品情報≫
著者名:杉山阿聖、太田満久、久井裕貴
出版社名:講談社
発行年月:2024年09月
判型:A5
ISBN:9784065369562
≪内容情報≫
★機械学習の実利用で、本当にビジネスの価値を生み出すには?★
技術・プロセス・文化の3面から学ぶ、「MLOps」はじめての実践ガイドが登場!
機械学習システムをビジネスに導入し、運用していく中での悩みによく効くノウハウが満載です。
企業が事業で機械学習の成果をスケールさせるためのさまざまな取り組みをMLOpsといいます。
本書はそのMLOpsを解説する書籍です。
第1部ではMLOpsの全体像、そしてそれを実現する技術・プロセス・文化を紹介します。機械学習をビジネスに導入し、運用していくための基礎知識がわかりやすく学べます。
第2部では、第1部に対応したプラクティスを9つの組織から提供してもらいました。
【おもな内容】
第1部 MLOpsの背景と全体像
1章 MLOps とは
1.1 MLOpsの背景
1.2 本書でのMLOpsの全体像
2章 MLOps を実現する技術
2.1 機械学習パイプライン
2.2 推論システム
2.3 技術選定
2.4 機械学習の実行環境とアクセラレーター
2.5 機械学習システムのモニタリング
2.6 データの品質管理
2.7コードの品質管理
3章 MLOps を支えるプロセス・文化
3.1 機械学習システムの開発フローとPoC
3.2 素早い実験を繰り返す
3.3 多様な利害関係者との協業
3.4 ビジネスの意思決定に役立つモニタリング
3.5 MLOps のプロセスを支える文化
第2部 MLOpsの実践事例と処方箋
4章 DeNAにおける機械学習プロジェクトの進め方(株式会社ディー・エヌ・エー 玉木竜二 藤原秀平)
5章 少人数で迅速に実現する コンテンツレコメンドにおけるMLOps(株式会社CAM 原和希)
6章 顧客ごとに複数機械学習モデルを出し分ける学習と推論のアーキテクチャ(澁井雄介)
7章 機械学習パイプライン構築事例から見る技術選定(安立健人)
8章 事故を減らすための機械学習モデル適用の工夫(株式会社ディー・エヌ・エー〈GO株式会社出向〉 松井健一)
9章 機械学習プロジェクトの失敗確率 80% を克服するプラクティス(アマゾン ウェブ サービス ジャパン合同会社 久保隆宏)
10章 ML Test Score を用いた機械学習システムの定量的なアセスメント(柏木正隆)
11章 大規模言語モデルの研究開発から実運用に向けて(株式会社日本経済新聞社 石原祥太郎)
12章 ユーザー企業における機械学習プロジェクトの推進事例(サントリーシステムテクノロジー株式会社 高木基成)
著者名:杉山阿聖、太田満久、久井裕貴
出版社名:講談社
発行年月:2024年09月
判型:A5
ISBN:9784065369562
≪内容情報≫
★機械学習の実利用で、本当にビジネスの価値を生み出すには?★
技術・プロセス・文化の3面から学ぶ、「MLOps」はじめての実践ガイドが登場!
機械学習システムをビジネスに導入し、運用していく中での悩みによく効くノウハウが満載です。
企業が事業で機械学習の成果をスケールさせるためのさまざまな取り組みをMLOpsといいます。
本書はそのMLOpsを解説する書籍です。
第1部ではMLOpsの全体像、そしてそれを実現する技術・プロセス・文化を紹介します。機械学習をビジネスに導入し、運用していくための基礎知識がわかりやすく学べます。
第2部では、第1部に対応したプラクティスを9つの組織から提供してもらいました。
【おもな内容】
第1部 MLOpsの背景と全体像
1章 MLOps とは
1.1 MLOpsの背景
1.2 本書でのMLOpsの全体像
2章 MLOps を実現する技術
2.1 機械学習パイプライン
2.2 推論システム
2.3 技術選定
2.4 機械学習の実行環境とアクセラレーター
2.5 機械学習システムのモニタリング
2.6 データの品質管理
2.7コードの品質管理
3章 MLOps を支えるプロセス・文化
3.1 機械学習システムの開発フローとPoC
3.2 素早い実験を繰り返す
3.3 多様な利害関係者との協業
3.4 ビジネスの意思決定に役立つモニタリング
3.5 MLOps のプロセスを支える文化
第2部 MLOpsの実践事例と処方箋
4章 DeNAにおける機械学習プロジェクトの進め方(株式会社ディー・エヌ・エー 玉木竜二 藤原秀平)
5章 少人数で迅速に実現する コンテンツレコメンドにおけるMLOps(株式会社CAM 原和希)
6章 顧客ごとに複数機械学習モデルを出し分ける学習と推論のアーキテクチャ(澁井雄介)
7章 機械学習パイプライン構築事例から見る技術選定(安立健人)
8章 事故を減らすための機械学習モデル適用の工夫(株式会社ディー・エヌ・エー〈GO株式会社出向〉 松井健一)
9章 機械学習プロジェクトの失敗確率 80% を克服するプラクティス(アマゾン ウェブ サービス ジャパン合同会社 久保隆宏)
10章 ML Test Score を用いた機械学習システムの定量的なアセスメント(柏木正隆)
11章 大規模言語モデルの研究開発から実運用に向けて(株式会社日本経済新聞社 石原祥太郎)
12章 ユーザー企業における機械学習プロジェクトの推進事例(サントリーシステムテクノロジー株式会社 高木基成)