1/19 時点_ポイント最大2倍

Optunaによるブラックボックス最適化 /佐野正太郎 秋葉拓哉 今村秀明

[在庫なし]

販売価格
3,520
(税込)
送料無料
出荷目安:
1~2営業日で出荷
たまるdポイント(通常) 32

+キャンペーンポイント(期間・用途限定) 最大1倍

※たまるdポイントはポイント支払を除く商品代金(税抜)の1%です。

表示倍率は各キャンペーンの適用条件を全て満たした場合の最大倍率です。
各キャンペーンの適用状況によっては、ポイントの進呈数・付与倍率が最大倍率より少なくなる場合がございます。
dカードでお支払ならポイント3倍
remove_shopping_cart在庫なし

  • 商品情報
  • レビュー
≪商品情報≫

著者名:佐野正太郎、秋葉拓哉、今村秀明
出版社名:オーム社
発行年月:2023年02月
判型:A5
ISBN:9784274230103


≪内容情報≫

チューニングを自動化するブラックボックス最適化について詳説

本書は、機械学習に欠かせないハイパーパラメータ調整(チューニング)を自動化するブラックボックス最適化について一からわかりやすく、そして、詳しく説明した書籍です。合わせて、Python言語上で動作するフレームワーク“Optuna”によるブラックボックス最適化の実行を、Optunaの開発者ら自ら詳しく説明しており、基礎を理解しながら実践に即した知識を身につけることができます。
いまや機械学習は多種多様な応用が広く図られており、技術者/研究者、学生全般にとって必修といえるスキルになっていますが、その際に手間を要するのが、ハイパーパラメータ調整です。特に、深層学習(ディープラーニング)では、ハイパーパラメータの数が多い傾向があるうえに、その調整が性能を大きく左右するといわれています。多くの技術者が、これにかなりの時間が費やされてしまっているのが実情です。ブラックボックス最適化は汎用性も高く、機械学習のハイパーパラメータ調整に限らず、工学や日常生活にかかわる多くのことを最適化できます。例えば、本書ではミドルウェアのパフォーマンス調整や、お菓子のレシピ作成にブラックボックス最適化を応用する方法も紹介しています。
ハイパーパラメータ調整の手間を大幅に削減するブラックボックス最適化とそのPythonベースのフレームワークOptunaについて、応用例からアルゴリズムまでを一からわかりやすく説明した書籍です。機械学習に留まらず、科学技術のあらゆる分野で登場するブラックボックス最適化に入門するにあたって最適な書籍です。

Optunaによるブラックボックス最適化 /佐野正太郎 秋葉拓哉 今村秀明のレビュー

投稿されたレビューは0件です。

この商品のカテゴリ

同カテゴリのおすすめ商品

別カテゴリのおすすめ商品

ふるさと納税百選のおすすめ返礼品