11/22
時点_ポイント最大11倍
積分公式で啓くベクトル解析と微分幾何学 ストークスの定理から変分公式まで /小池直之
販売価格
5,280
円 (税込)
送料無料
- 出荷目安:
- 1~2営業日で出荷
たまるdポイント(通常) 48
+キャンペーンポイント(期間・用途限定) 最大10倍
※たまるdポイントはポイント支払を除く商品代金(税抜)の1%です。
※表示倍率は各キャンペーンの適用条件を全て満たした場合の最大倍率です。
各キャンペーンの適用状況によっては、ポイントの進呈数・付与倍率が最大倍率より少なくなる場合がございます。
dカードでお支払ならポイント3倍
各キャンペーンの適用状況によっては、ポイントの進呈数・付与倍率が最大倍率より少なくなる場合がございます。
- 商品情報
- レビュー
≪商品情報≫
著者名:小池直之
出版社名:共立出版
発行年月:2022年09月
判型:A5
ISBN:9784320114753
≪内容情報≫
本書は、「積分公式」に焦点を当てることにより、ベクトル解析と微分幾何学を俯瞰する一冊である。
ベクトル解析において、グリーンの定理や(曲面に沿うベクトル場に対する)ストークスの定理、ガウスの発散定理を学ぶが、これらは微分幾何学において「多様体上の微分形式に対するストークスの定理」として包括的に論ずることができる。また、多様体論と位相幾何学を結びつけるド・ラームの定理は、多様体上のストークスの定理を用いて示され、さらに、曲面論におけるガウス・ボンネの定理もストークスの定理により導かれる。一方で、微分幾何学における偶数次元閉超曲面におけるガウス・ボンネの定理の証明には、モース理論を用いたまったく別の手法が用いられる。
本書ではこれらの事実をスムーズに学べ、さらに、体積汎関数の第1変分公式・第2変分公式とその完全証明も与えられており、「積分公式」を通して見えるベクトル解析と微分幾何学のつながりを案内する。
また、モース理論の完全証明や特性類の位相幾何学的定義(障害理論に基づいた定義)、および微分幾何学的定義(チャーン・ヴェイユ理論に基づいた定義)、さらには、ガウス・ボンネの定理が特性類の一つであるオイラー類の積分を用いた積分表示公式として与えられることも解説されており、微分幾何学と位相幾何学の密接なつながりも実感できる。
本書では各所で図を挿み、視覚的に理解できるよう工夫されている。
著者名:小池直之
出版社名:共立出版
発行年月:2022年09月
判型:A5
ISBN:9784320114753
≪内容情報≫
本書は、「積分公式」に焦点を当てることにより、ベクトル解析と微分幾何学を俯瞰する一冊である。
ベクトル解析において、グリーンの定理や(曲面に沿うベクトル場に対する)ストークスの定理、ガウスの発散定理を学ぶが、これらは微分幾何学において「多様体上の微分形式に対するストークスの定理」として包括的に論ずることができる。また、多様体論と位相幾何学を結びつけるド・ラームの定理は、多様体上のストークスの定理を用いて示され、さらに、曲面論におけるガウス・ボンネの定理もストークスの定理により導かれる。一方で、微分幾何学における偶数次元閉超曲面におけるガウス・ボンネの定理の証明には、モース理論を用いたまったく別の手法が用いられる。
本書ではこれらの事実をスムーズに学べ、さらに、体積汎関数の第1変分公式・第2変分公式とその完全証明も与えられており、「積分公式」を通して見えるベクトル解析と微分幾何学のつながりを案内する。
また、モース理論の完全証明や特性類の位相幾何学的定義(障害理論に基づいた定義)、および微分幾何学的定義(チャーン・ヴェイユ理論に基づいた定義)、さらには、ガウス・ボンネの定理が特性類の一つであるオイラー類の積分を用いた積分表示公式として与えられることも解説されており、微分幾何学と位相幾何学の密接なつながりも実感できる。
本書では各所で図を挿み、視覚的に理解できるよう工夫されている。