1/5
時点_ポイント最大9倍
連分数と楕円積分 /杉山健一
販売価格
3,520
円 (税込)
送料無料
- 出荷目安:
- 1~2営業日で出荷
たまるdポイント(通常) 32
+キャンペーンポイント(期間・用途限定) 最大8倍
※たまるdポイントはポイント支払を除く商品代金(税抜)の1%です。
※表示倍率は各キャンペーンの適用条件を全て満たした場合の最大倍率です。
各キャンペーンの適用状況によっては、ポイントの進呈数・付与倍率が最大倍率より少なくなる場合がございます。
dカードでお支払ならポイント3倍
各キャンペーンの適用状況によっては、ポイントの進呈数・付与倍率が最大倍率より少なくなる場合がございます。
- 商品情報
- レビュー
≪商品情報≫
著者名:杉山健一
出版社名:共立出版
発行年月:2025年02月
判型:A5
ISBN:9784320115750
≪内容情報≫
――連分数と楕円積分から整数論の扉を開く――
実数を連分数を用いて表すと、隠れていた性質が明らかになることがある。その背景には、整数論に由来する深い事実が隠されている。とくにπ/4の連分数表示はガウスにより発見され、その証明に超幾何関数が用いられた。
一方、楕円の周の長さを初等関数で求めることはできないが超幾何関数で表すことができ、その値は算術幾何平均となる。さらに、算術幾何平均はテータ関数を用いて表すことができるので、楕円の長さを通じて超幾何関数とテータ関数が関係する。これは、周期積分を仲立ちにして、超幾何関数とテータ関数が結びつく深い数学的な事実の一例となっている。
本書では、連分数と算術幾何平均をとおして、現代の数学で重要な役割を果たす超幾何関数とテータ関数を解説する。
〔予備知識〕 微積分・線形代数
複素関数と有限体に関する知識があればより読みやすいが、必要な知識は巻末の付録にまとめた。
〔本書の特長〕
・計算過程を丁寧に記述し、初学者が一人でも読み進めやすいよう配慮した。
・超幾何関数の変換公式をべき級数を用いて証明した。技巧を要する積分の変数変換を用いないため、計算が追いやすくなった。
・やや発展的な話題として、有限体上で定義された超幾何関数を取り上げた。指標を導入することで、標数pの体を定義域とし、標数0の体を値域とする超幾何関数についても紹介した。
著者名:杉山健一
出版社名:共立出版
発行年月:2025年02月
判型:A5
ISBN:9784320115750
≪内容情報≫
――連分数と楕円積分から整数論の扉を開く――
実数を連分数を用いて表すと、隠れていた性質が明らかになることがある。その背景には、整数論に由来する深い事実が隠されている。とくにπ/4の連分数表示はガウスにより発見され、その証明に超幾何関数が用いられた。
一方、楕円の周の長さを初等関数で求めることはできないが超幾何関数で表すことができ、その値は算術幾何平均となる。さらに、算術幾何平均はテータ関数を用いて表すことができるので、楕円の長さを通じて超幾何関数とテータ関数が関係する。これは、周期積分を仲立ちにして、超幾何関数とテータ関数が結びつく深い数学的な事実の一例となっている。
本書では、連分数と算術幾何平均をとおして、現代の数学で重要な役割を果たす超幾何関数とテータ関数を解説する。
〔予備知識〕 微積分・線形代数
複素関数と有限体に関する知識があればより読みやすいが、必要な知識は巻末の付録にまとめた。
〔本書の特長〕
・計算過程を丁寧に記述し、初学者が一人でも読み進めやすいよう配慮した。
・超幾何関数の変換公式をべき級数を用いて証明した。技巧を要する積分の変数変換を用いないため、計算が追いやすくなった。
・やや発展的な話題として、有限体上で定義された超幾何関数を取り上げた。指標を導入することで、標数pの体を定義域とし、標数0の体を値域とする超幾何関数についても紹介した。

