11/28
時点_ポイント最大11倍
詳解ディープラーニング TensorFlow/Keras・PyTorchによる時系列データ処理 第2版 /巣籠悠輔
販売価格
3,740
円 (税込)
送料無料
- 出荷目安:
- 1~2営業日で出荷
たまるdポイント(通常) 34
+キャンペーンポイント(期間・用途限定) 最大10倍
※たまるdポイントはポイント支払を除く商品代金(税抜)の1%です。
※表示倍率は各キャンペーンの適用条件を全て満たした場合の最大倍率です。
各キャンペーンの適用状況によっては、ポイントの進呈数・付与倍率が最大倍率より少なくなる場合がございます。
dカードでお支払ならポイント3倍
各キャンペーンの適用状況によっては、ポイントの進呈数・付与倍率が最大倍率より少なくなる場合がございます。
- 商品情報
- レビュー
≪商品情報≫
著者名:巣籠悠輔
出版社名:マイナビ出版
発行年月:2019年11月
判型:B5
ISBN:9784839969516
≪内容情報≫
ニューラルネットワークの理論とディープラーニングの実装について丁寧に解説。実装には、Python(3.x)とディープラーニング向けライブラリKeras(2.x)、TensorFlow(2.x)、PyTorch(1.x)を用います。
本書では、自然言語処理をはじめとした時系列データ処理のためのディープラーニング・アルゴリズムに焦点を当てているのも大きな特徴の1つです。本書の[第1版](2017年)以降に次々と登場している新しい手法やモデルを丁寧に説明、記事も大幅にボリュームアップしました。
[本書の構成]
1章 数学の準備:ニューラルネットワークのアルゴリズムを理解するための数学の知識、偏微分と線形代数の基本を学びます。アルゴリズムが複雑になってもこの2つを押さえておけばきちんと理解できます。
2章 Pythonの準備:ディープラーニングのアルゴリズムを実装するため、Python環境の構築およびPythonの基本から代表的なライブラリの使い方までを解説します。
3章 ニューラルネットワーク:ニューラルネットワークとは何か、どういった手法かを解説します。単純パーセプトロン、ロジスティック回帰、多クラスロジスティック回帰、多層パーセプトロンを扱います。
4章 ディープニューラルネットワーク:ディープラーニングはニューラルネットワークのモデルの発展形です。ニューラルネットワークから「ディープ」ニューラルネットワークになるうえで発生する課題とそれを解決するテクニックについて解説します。
5章 リカレントニューラルネットワーク:ニューラルネットワークに「時間」という概念を取り込むとどのようなモデルになるのか。通常のディープラーニングのモデルではうまく扱うことができない時系列データの扱いに特化したモデルであるリカレントニューラルネットワーク(RNN)とその手法LSTM、GRUについて取り上げます。
6章 リカレントニューラルネットワークの応用:時系列データの扱いに関しては、自然言語処理で新しいモデルが考えられてきました。本章では、Encoder-Decoder、Attention、Transformerについて学んでいきます。
付録 ライブラリ内部の処理を理解するためのグラフの知識と、Pythonのデコレータ @tf.function の実装例、Keras、TensorFlow、PyTorchによるモデルの保存・読み込みについて解説します。
著者名:巣籠悠輔
出版社名:マイナビ出版
発行年月:2019年11月
判型:B5
ISBN:9784839969516
≪内容情報≫
ニューラルネットワークの理論とディープラーニングの実装について丁寧に解説。実装には、Python(3.x)とディープラーニング向けライブラリKeras(2.x)、TensorFlow(2.x)、PyTorch(1.x)を用います。
本書では、自然言語処理をはじめとした時系列データ処理のためのディープラーニング・アルゴリズムに焦点を当てているのも大きな特徴の1つです。本書の[第1版](2017年)以降に次々と登場している新しい手法やモデルを丁寧に説明、記事も大幅にボリュームアップしました。
[本書の構成]
1章 数学の準備:ニューラルネットワークのアルゴリズムを理解するための数学の知識、偏微分と線形代数の基本を学びます。アルゴリズムが複雑になってもこの2つを押さえておけばきちんと理解できます。
2章 Pythonの準備:ディープラーニングのアルゴリズムを実装するため、Python環境の構築およびPythonの基本から代表的なライブラリの使い方までを解説します。
3章 ニューラルネットワーク:ニューラルネットワークとは何か、どういった手法かを解説します。単純パーセプトロン、ロジスティック回帰、多クラスロジスティック回帰、多層パーセプトロンを扱います。
4章 ディープニューラルネットワーク:ディープラーニングはニューラルネットワークのモデルの発展形です。ニューラルネットワークから「ディープ」ニューラルネットワークになるうえで発生する課題とそれを解決するテクニックについて解説します。
5章 リカレントニューラルネットワーク:ニューラルネットワークに「時間」という概念を取り込むとどのようなモデルになるのか。通常のディープラーニングのモデルではうまく扱うことができない時系列データの扱いに特化したモデルであるリカレントニューラルネットワーク(RNN)とその手法LSTM、GRUについて取り上げます。
6章 リカレントニューラルネットワークの応用:時系列データの扱いに関しては、自然言語処理で新しいモデルが考えられてきました。本章では、Encoder-Decoder、Attention、Transformerについて学んでいきます。
付録 ライブラリ内部の処理を理解するためのグラフの知識と、Pythonのデコレータ @tf.function の実装例、Keras、TensorFlow、PyTorchによるモデルの保存・読み込みについて解説します。