1/1 時点_ポイント最大2倍

ベイズ深層学習/須山敦志

販売価格
3,300
(税込)
送料無料
出荷目安:
1~3日で発送予定
たまるdポイント(通常) 30

+キャンペーンポイント(期間・用途限定) 最大1倍

※たまるdポイントはポイント支払を除く商品代金(税抜)の1%です。

表示倍率は各キャンペーンの適用条件を全て満たした場合の最大倍率です。
各キャンペーンの適用状況によっては、ポイントの進呈数・付与倍率が最大倍率より少なくなる場合がございます。
dカードでお支払ならポイント3倍

  • 商品情報
  • レビュー
須山敦志
講談社
機械学習プロフェッショナルシリーズ
ISBN:4065168708/9784065168707
発売日:2019年08月



※商品画像はイメージや仮デザインが含まれている場合があります。帯の有無など実際と異なる場合があります。

【内容紹介】
「読んでいて本当に心地がいい」と大好評の前著『ベイズ推論による機械学習入門』からの第2弾!

「深層学習とベイズ統計の融合」がすべて詰まった 「欲張り」本!
基礎からはじめ、深層生成モデルやガウス過程とのつながりまでをていねいに解説した。本邦初の成書!

本書のサポートページ
https //github.com/sammy-suyama/BayesianDeepLearningBook

【主な内容】
第1章 はじめに
1.1 ベイズ統計とニューラルネットワークの変遷
1.2 ベイズ深層学習

第2章 ニューラルネットワークの基礎
2.1 線形回帰モデル
2.2 ニューラルネットワーク
2.3 効率的な学習法
2.4 ニューラルネットワークの拡張モデル

第3章 ベイズ推論の基礎
3.1 確率推論
3.2 指数型分布族
3.3 ベイズ線形回帰
3.4 最尤推定、MAP推定との関係

第4章 近似ベイズ推論
4.1 サンプリングに基づく推論手法
4.2 最適化に基づく推論手法

第5章 ニューラルネットワークのベイズ推論
5.1 ベイズニューラルネットワークモデルの近似推論法
5.2 近似ベイズ推論の効率化
5.3 ベイズ推論と確率的正則化
5.4 不確実性の推定を使った応用

第6章 深層生成モデル
6.1 変分自己符号化器
6.2 変分モデル
6.3 生成ネットワークの構造学習
6.4 その他の深層生成モデル

第7章 深層学習とガウス過程
7.1 ガウス過程の基礎
7.2 ガウス過程による分類
7.3 ガウス過程のスパース近似
7.4 深層学習のガウス過程解釈
7.5 ガウス過程による生成モデル

※本データはこの商品が発売された時点の情報です。

ベイズ深層学習/須山敦志のレビュー

投稿されたレビューは0件です。

この商品のカテゴリ

同カテゴリのおすすめ商品

別カテゴリのおすすめ商品

ふるさと納税百選のおすすめ返礼品