1/21
時点_ポイント最大2倍
数の世界 自然数から実数、複素数、そして四元数へ/松岡学
販売価格
1,320
円 (税込)
送料無料
- 出荷目安:
- 1~3日で発送予定
たまるdポイント(通常) 12
+キャンペーンポイント(期間・用途限定) 最大1倍
※たまるdポイントはポイント支払を除く商品代金(税抜)の1%です。
※表示倍率は各キャンペーンの適用条件を全て満たした場合の最大倍率です。
各キャンペーンの適用状況によっては、ポイントの進呈数・付与倍率が最大倍率より少なくなる場合がございます。
dカードでお支払ならポイント3倍
各キャンペーンの適用状況によっては、ポイントの進呈数・付与倍率が最大倍率より少なくなる場合がございます。
- 商品情報
- レビュー
松岡学
講談社
ブルーバックス B-2126
ISBN:4065187451/9784065187456
発売日:2020年02月
※商品画像はイメージや仮デザインが含まれている場合があります。帯の有無など実際と異なる場合があります。
【内容紹介】
1、2、3、‥‥といった「自然数」、自然数に、0、-1、-2、-3‥‥を加えた「整数」、分数の形で表すことができる「有理数」、有理数と無理数を合わせた「実数」、そして虚数単位のiを用いた「複素数」と、数学の発展とともに数の世界は広がってきました。
本書では、19世紀のイギリスの数学者ハミルトンによって導入された「四元数」と、同時期にグレイヴスやケイリーによって発見された「八元数」をみることによって、次々と数の世界が広がっていく不思議を解説します。
ハミルトンが発見した四元数の世界は複素数を含む数の体系とも考えられますが、交換法則が成り立たない世界です。しかし、その導入の経緯から3次元の回転を記述するのに優れていて、現在のコンピュータ・グラフィックスへの応用があります。さらに数を広げようと考えられたのが八元数です。複素数が2つの実数の組、四元数が4つの実数の組だと考えられるのと同じく、八元数は8つの実数の組だと考えることができます。四元数では交換法則が成り立たなくなりましたが、八元数では、交換法則と結合法則が成り立たなくなりますが、物理学の究極の理論といわれている超弦理論やM理論と結びついていることがわかっています。
数を拡張していくという視点から、自然数から実数、複素数、そして四元数や八元数の世界やその性質を見ていきます。はてしなく広がる数の不思議を実感できる一冊です。
講談社
ブルーバックス B-2126
ISBN:4065187451/9784065187456
発売日:2020年02月
※商品画像はイメージや仮デザインが含まれている場合があります。帯の有無など実際と異なる場合があります。
【内容紹介】
1、2、3、‥‥といった「自然数」、自然数に、0、-1、-2、-3‥‥を加えた「整数」、分数の形で表すことができる「有理数」、有理数と無理数を合わせた「実数」、そして虚数単位のiを用いた「複素数」と、数学の発展とともに数の世界は広がってきました。
本書では、19世紀のイギリスの数学者ハミルトンによって導入された「四元数」と、同時期にグレイヴスやケイリーによって発見された「八元数」をみることによって、次々と数の世界が広がっていく不思議を解説します。
ハミルトンが発見した四元数の世界は複素数を含む数の体系とも考えられますが、交換法則が成り立たない世界です。しかし、その導入の経緯から3次元の回転を記述するのに優れていて、現在のコンピュータ・グラフィックスへの応用があります。さらに数を広げようと考えられたのが八元数です。複素数が2つの実数の組、四元数が4つの実数の組だと考えられるのと同じく、八元数は8つの実数の組だと考えることができます。四元数では交換法則が成り立たなくなりましたが、八元数では、交換法則と結合法則が成り立たなくなりますが、物理学の究極の理論といわれている超弦理論やM理論と結びついていることがわかっています。
数を拡張していくという視点から、自然数から実数、複素数、そして四元数や八元数の世界やその性質を見ていきます。はてしなく広がる数の不思議を実感できる一冊です。
※本データはこの商品が発売された時点の情報です。




