1/11
時点_ポイント最大11倍
Pythonではじめるベイズ機械学習入門/森賀新/木田悠歩/須山敦志
販売価格
3,080
円 (税込)
送料無料
- 出荷目安:
- 1~3日で発送予定
たまるdポイント(通常) 28
+キャンペーンポイント(期間・用途限定) 最大10倍
※たまるdポイントはポイント支払を除く商品代金(税抜)の1%です。
※表示倍率は各キャンペーンの適用条件を全て満たした場合の最大倍率です。
各キャンペーンの適用状況によっては、ポイントの進呈数・付与倍率が最大倍率より少なくなる場合がございます。
dカードでお支払ならポイント3倍
各キャンペーンの適用状況によっては、ポイントの進呈数・付与倍率が最大倍率より少なくなる場合がございます。
- 商品情報
- レビュー
森賀新木田悠歩須山敦志
講談社
ISBN:406527978X/9784065279786
発売日:2022年05月
※商品画像はイメージや仮デザインが含まれている場合があります。帯の有無など実際と異なる場合があります。
【内容紹介】
★確率的プログラミング言語がすぐに使える!★
・Pythonでのコーディングを前提に、PyMC3、Pyro、NumPyro、TFP、GPyTorchをカバー。
・回帰モデルの基本から潜在変数モデル・深層学習モデルまでを幅広く解説。
【主な内容】
第1章 ベイジアンモデリングとは
1.1 データ解析とコンピュータ
1.2 ベイジアンモデリングの基礎
1.3 代表的な確率分布
1.4 近似推論手法
第2章 確率的プログラミング言語(PPL)
2.1 ベイジアンモデリングとPPL
2.2 自動微分・最適化アルゴリズム
2.3 PyMC3の概要
2.4 Pyroの概要
2.5 NumPyroの概要
2.6 TensorFlow Probabilityの概要
2.7 GPyTorchの概要
第3章 回帰モデル
3.1 線形回帰モデル 線形単回帰モデル
3.2 線形回帰モデル 線形重回帰モデル
3.3 一般化線形モデル ポアソン回帰モデル
3.4 一般化線形モデル ロジスティック回帰モデル
3.5 階層ベイズモデル
3.6 ガウス過程回帰モデル ガウス尤度
3.7 ガウス過程回帰モデル 尤度の一般化
第4章 潜在変数モデル
4.1 混合ガウスモデル
4.2 行列分解モデル
4.3 状態空間モデル
4.4 隠れマルコフモデル
4.5 トピックモデル
4.6 ガウス過程潜在変数モデル
第5章 深層学習モデル
5.1 ニューラルネットワーク回帰モデル
5.2 変分自己符号化器
5.3 PixelCNN
5.4 深層ガウス過程
5.5 正規化流
講談社
ISBN:406527978X/9784065279786
発売日:2022年05月
※商品画像はイメージや仮デザインが含まれている場合があります。帯の有無など実際と異なる場合があります。
【内容紹介】
★確率的プログラミング言語がすぐに使える!★
・Pythonでのコーディングを前提に、PyMC3、Pyro、NumPyro、TFP、GPyTorchをカバー。
・回帰モデルの基本から潜在変数モデル・深層学習モデルまでを幅広く解説。
【主な内容】
第1章 ベイジアンモデリングとは
1.1 データ解析とコンピュータ
1.2 ベイジアンモデリングの基礎
1.3 代表的な確率分布
1.4 近似推論手法
第2章 確率的プログラミング言語(PPL)
2.1 ベイジアンモデリングとPPL
2.2 自動微分・最適化アルゴリズム
2.3 PyMC3の概要
2.4 Pyroの概要
2.5 NumPyroの概要
2.6 TensorFlow Probabilityの概要
2.7 GPyTorchの概要
第3章 回帰モデル
3.1 線形回帰モデル 線形単回帰モデル
3.2 線形回帰モデル 線形重回帰モデル
3.3 一般化線形モデル ポアソン回帰モデル
3.4 一般化線形モデル ロジスティック回帰モデル
3.5 階層ベイズモデル
3.6 ガウス過程回帰モデル ガウス尤度
3.7 ガウス過程回帰モデル 尤度の一般化
第4章 潜在変数モデル
4.1 混合ガウスモデル
4.2 行列分解モデル
4.3 状態空間モデル
4.4 隠れマルコフモデル
4.5 トピックモデル
4.6 ガウス過程潜在変数モデル
第5章 深層学習モデル
5.1 ニューラルネットワーク回帰モデル
5.2 変分自己符号化器
5.3 PixelCNN
5.4 深層ガウス過程
5.5 正規化流
※本データはこの商品が発売された時点の情報です。


