12/31
時点_ポイント最大4倍
数・学・探・検・共立講座 4/新井仁之/小林俊行/斎藤毅
販売価格
2,530
円 (税込)
送料無料
- 出荷目安:
- 1~3日で発送予定
たまるdポイント(通常) 23
+キャンペーンポイント(期間・用途限定) 最大3倍
※たまるdポイントはポイント支払を除く商品代金(税抜)の1%です。
※表示倍率は各キャンペーンの適用条件を全て満たした場合の最大倍率です。
各キャンペーンの適用状況によっては、ポイントの進呈数・付与倍率が最大倍率より少なくなる場合がございます。
dカードでお支払ならポイント3倍
各キャンペーンの適用状況によっては、ポイントの進呈数・付与倍率が最大倍率より少なくなる場合がございます。
- 商品情報
- レビュー
新井仁之小林俊行斎藤毅
共立出版
ISBN:432011177X/9784320111776
発売日:2016年05月
【内容紹介】
本書の目的は、複素関数論あるいは複素解析学に入る前の段階までの数(カズ)としての複素数について厳密性を維持しながらできるだけ平易に解説することである。新しい工夫としては、通常の教科書ではあまり触れられることのない数の超越性の初等的部分を扱う点と、複素数と「定規・コンパス」の組み合わせを強調したことである。
自然数から数を順次拡大する必然性を“代数方程式の原理”(根の存在)に求め、これを柱に複素数の理論を展開する。代数方程式の定理(ガウス)の証明を実数の完備性に基づき厳密に証明する。応用として、超越性の判定において古典的なリュービルの定理や、eやπの無理数性と超越性の初等的証明を与える。一次変換と等角性を解説し、その結果を用いて非ユークリッド幾何学を平易に解説する。
各所に複素数の演算を「定規とコンパス」で実現する解説と演習が与えられている。この延長線上で最終的には、非ユークリッド双曲幾何を定規とコンパスで描くことを実行する。本書を最後まで読まれた読者は、非ユークリッド双曲幾何の無矛盾性がポアンカレモデルを通してユークリッド幾何のそれに帰着し、結局は実数論の無矛盾性に帰することを経験することになる。一見抽象的と思われるロバチェフスキー・ボリアイの非ユークリッド双曲幾何もその原理は定規・コンパスで紙上に実現されるということを体験することとなる。
巻末補足では、対称式、代数的数の四則、集合論的実数の構成の解説をする。
共立出版
ISBN:432011177X/9784320111776
発売日:2016年05月
【内容紹介】
本書の目的は、複素関数論あるいは複素解析学に入る前の段階までの数(カズ)としての複素数について厳密性を維持しながらできるだけ平易に解説することである。新しい工夫としては、通常の教科書ではあまり触れられることのない数の超越性の初等的部分を扱う点と、複素数と「定規・コンパス」の組み合わせを強調したことである。
自然数から数を順次拡大する必然性を“代数方程式の原理”(根の存在)に求め、これを柱に複素数の理論を展開する。代数方程式の定理(ガウス)の証明を実数の完備性に基づき厳密に証明する。応用として、超越性の判定において古典的なリュービルの定理や、eやπの無理数性と超越性の初等的証明を与える。一次変換と等角性を解説し、その結果を用いて非ユークリッド幾何学を平易に解説する。
各所に複素数の演算を「定規とコンパス」で実現する解説と演習が与えられている。この延長線上で最終的には、非ユークリッド双曲幾何を定規とコンパスで描くことを実行する。本書を最後まで読まれた読者は、非ユークリッド双曲幾何の無矛盾性がポアンカレモデルを通してユークリッド幾何のそれに帰着し、結局は実数論の無矛盾性に帰することを経験することになる。一見抽象的と思われるロバチェフスキー・ボリアイの非ユークリッド双曲幾何もその原理は定規・コンパスで紙上に実現されるということを体験することとなる。
巻末補足では、対称式、代数的数の四則、集合論的実数の構成の解説をする。
※本データはこの商品が発売された時点の情報です。


