1/4 時点_ポイント最大2倍

データ同化/中野慎也

販売価格
2,530
(税込)
送料無料
出荷目安:
1~3日で発送予定
たまるdポイント(通常) 23

+キャンペーンポイント(期間・用途限定) 最大1倍

※たまるdポイントはポイント支払を除く商品代金(税抜)の1%です。

表示倍率は各キャンペーンの適用条件を全て満たした場合の最大倍率です。
各キャンペーンの適用状況によっては、ポイントの進呈数・付与倍率が最大倍率より少なくなる場合がございます。
dカードでお支払ならポイント3倍

  • 商品情報
  • レビュー
中野慎也
共立出版
統計学One Point 26
ISBN:4320112776/9784320112773
発売日:2024年09月



※商品画像はイメージや仮デザインが含まれている場合があります。帯の有無など実際と異なる場合があります。

【内容紹介】
データ同化は、数値シミュレーションと現実の観測データを組み合わせて、システムの状態や時間発展を推定する手法である。データ同化を行うと、実際のデータを利用してシミュレーションによる計算を現実に近づけることができる。また、シミュレーションモデルの持つシステムについての知見を利用することで観測の不完全な部分を補うこともできる。もともと数値天気予報の技術として発展した考え方だが、その方法論は様々な分野で活用されるようになっている。
本書は、データ同化で用いられる代表的な方法について基礎から解説したものである。まず、状態空間モデルに基づくデータ同化の定式化を行い、状態空間モデルによる逐次データ同化の基本的な手法として、線型システムを仮定したカルマンフィルタを導入する。さらに、非線型かつ高次元の問題に適用できる代表的な逐次データ同化手法として、アンサンブルカルマンフィルタ、アンサンブル変換カルマンフィルタを紹介する。さらに、逐次データ同化と並ぶ重要なアプローチである4次元変分法として、アジョイント法、アンサンブル変分法を取り上げる。また、比較的単純な題材をデータ同化手法の適用事例として取り上げ、理解を深められるように配慮している。これらの事例に関しては、計算を再現するためのPythonプログラムも配布しているので、参考にしたい方は利用していただきたい。
読者対象としては、大学学部1、 2年生程度の線型代数学、微分積分学、確率、統計の知識を習得済みの方を想定している。

※本データはこの商品が発売された時点の情報です。

データ同化/中野慎也のレビュー

投稿されたレビューは0件です。

この商品のカテゴリ

同カテゴリのおすすめ商品

別カテゴリのおすすめ商品

ふるさと納税百選のおすすめ返礼品