12/27
時点_ポイント最大13倍
Advanced Python 1/福島真太朗/委員堀越真映
販売価格
3,850
円 (税込)
送料無料
- 出荷目安:
- 1~3日で発送予定
たまるdポイント(通常) 35
+キャンペーンポイント(期間・用途限定) 最大12倍
※たまるdポイントはポイント支払を除く商品代金(税抜)の1%です。
※表示倍率は各キャンペーンの適用条件を全て満たした場合の最大倍率です。
各キャンペーンの適用状況によっては、ポイントの進呈数・付与倍率が最大倍率より少なくなる場合がございます。
dカードでお支払ならポイント3倍
各キャンペーンの適用状況によっては、ポイントの進呈数・付与倍率が最大倍率より少なくなる場合がございます。
- 商品情報
- レビュー
福島真太朗委員堀越真映
共立出版
ISBN:4320125010/9784320125018
発売日:2019年09月
【内容紹介】
「時系列解析」は過去の自身のデータから未来のデータを予測するために用いられる手法であるが、予測だけでなく、事象の分解・理解に強みを持つ手法でもある。本書では、応用範囲の広い「時系列解析」について、マーケティングやIoTなどの現場における実解析で応用ができるように解説の内容を選定し、手法の基礎的な理論をPythonのサンプルコードとともに解説した。簡単なデータを用いた簡単な課題を例にとり、基礎的なモデル構築の過程を段階的に体験できるように、また、自学により応用範囲を広げてもらえるように、どの場面で、なぜその手法を使うのかを考えられるように説明している。
本書では、経済・マーケティングの分野で多く用いられるARモデルに代表される自己回帰型の古典的なデータ解析手法、工学分野の信号処理でも活躍の場面が多いカルマンフィルタに代表される状態空間モデル、IoT分野で活躍の場面が多い異常検知について説明している。
解説では、各手法について、より簡単な手法から説明し、各データに対してモデリングがうまくいかない理由とその克服方法を合わせて提示することで、段階的に各手法の必要性を理解できるように心がけている。
共立出版
ISBN:4320125010/9784320125018
発売日:2019年09月
【内容紹介】
「時系列解析」は過去の自身のデータから未来のデータを予測するために用いられる手法であるが、予測だけでなく、事象の分解・理解に強みを持つ手法でもある。本書では、応用範囲の広い「時系列解析」について、マーケティングやIoTなどの現場における実解析で応用ができるように解説の内容を選定し、手法の基礎的な理論をPythonのサンプルコードとともに解説した。簡単なデータを用いた簡単な課題を例にとり、基礎的なモデル構築の過程を段階的に体験できるように、また、自学により応用範囲を広げてもらえるように、どの場面で、なぜその手法を使うのかを考えられるように説明している。
本書では、経済・マーケティングの分野で多く用いられるARモデルに代表される自己回帰型の古典的なデータ解析手法、工学分野の信号処理でも活躍の場面が多いカルマンフィルタに代表される状態空間モデル、IoT分野で活躍の場面が多い異常検知について説明している。
解説では、各手法について、より簡単な手法から説明し、各データに対してモデリングがうまくいかない理由とその克服方法を合わせて提示することで、段階的に各手法の必要性を理解できるように心がけている。
※本データはこの商品が発売された時点の情報です。


